
..—

TINY PASCAL

USERS MANUAL

VER 1.0

(0 1979 COPYRIGHT
MARTIN TRACY

AUGUST 1979
[■=£..

3 v C.TS.L.. y
CTB.U T

o-oCOPYRIGHT (0 1979 ALL RIGHTS RESERVED. m aReproduction in part or form of the contents of this document or its
accompanying cassette tape or disk, except for the personal use of the
original purchaser, is strictly forbidden without the expressed written
consent and permission of PROGRAMMA International, Inc.

01 0
no5 cp R O G R JV1SV1A

jIMTERNATIOiMAL, 1!\IC.
3400 Wilshire Blvd.
Los Angeles, CA 90010

■on
-I -5

0
(213) 384-0579 • 384-1116 • 384-1117

*© P«.S<^ (’ 2I Oi/ 48r (.• ; f

• i■

'Dos ctcl o oos

COPYRIGHT (c) 1979 by MARTIN TRACY

AUGUST 1979 EDITION
This edition (2300.001) is a major revision and obsoletes
all previous editions and documents.

Technical changes are marked with a bar in the outer margin.
Changes due to subsequent releases will be documented in the
future publication bulletins or revisions.

Requests for copies of PROGRAMMA publications should be
made to your PROGRAMMA representative or to the PROGRAMMA
central office.

A reader's comment form is provided at the back of this
publication. If the form has been removed, comments may
be addressed to:

PROGRAMMA International, Inc.
Publications Department
P.0. Box 70279
Los Angeles, CA 90070

PREFACE

This reference publication is intended for programmers using the
PROGRAMMA TINY PASCAL System. This publication describes how to
write Tiny Pascal source statements, system start-up, alteration
of system parameters, and error handling.
The original specifications and description of the implementation
of the Tiny Pascal System can be obtained from the September,

WOctober, and November 1978 issues of BYTE Magazine. The article
"A Tiny Pascal Compiler11 by Kin-Man Chung and Herbert Yuen may

Their address is:be purchased as a reprint direct] y from BYTE.
BYTE MAGAZINE
70 Main Street
Peterborough, NH 03458

An excellent book to introduce the reader to the PASCAL language
is "Programming in PASCAL" by Peter Grogono. The book is
available directly from PROGRAMMA International, Inc. or the
publisher: Addison-Wesley Publishing Company, Inc.
The reader should be familiar with the hardware manuals and
operational procedures of the devices attached to his particular
computer configuration.

CONTENTSTABLE 0 F

INTRODUCTION
1WHAT IS TINY PASCAL
1WHAT IS A COMPILER
1WHAT IS P-CODE
2WHAT DO I GET WHEN I PURCHASE TINY PASCAL
2HOW IS THE TINY PASCAL SYSTEM USED I •

OPERATION
3WHAT DO ALL THESE COMMANDS MEAN
6WHAT DOES TINY PASCAL LOOK LIKE,.

SYNTAX
8THE ASSIGNMENT STATEMENT
9ARITHMETIC OPERATORS
9THE MEM ARRAY

10HEXADECIMAL CONSTANTS
10HANDLING CHARACTER AND STRINGS
10READ AND WRITE

. 11USING APPLE DOS FROM TINY PASCAL
12THE IF-THEN-ELSE STATEMENT
12RELATIONAL OPERATORS
13THE WHILE LOOP
13THE REPEAT-UNTIL LOOP
mTHE FOR LOOP
mTHE CASE STATEMENT
15COMPOUND STATEMENTS
16PROCEDURE AND FUNCTIONS

18CALL

THE PASCAL EDITOR
18USING THE PASCAL EDITOR

ADVANCED TOPICS
20ERROR MESSAGES

20MAXIMUM NUMBER OF VARIABLES

20RUN TIME ERRORS l l

20SYSTEM FLAGS

21PASSING PARAMETERS VIA CALL

22MINIMAL RUN TIME SYSTEM

22EXTERNAL PROCEDURES AND OVERLAYS

22VERY HARD TO FIND BUGS

23LIBRARY

23PROGRAMMA PASCAL VS SUPERSOFT PASCAL i i i • i i i i * i

23DETOKEN....

LIBRARY.S.2 23
23CANNIBALS

24THE P-CODES

24THE INTERPRETER

25MEMORY REQUIREMENTS

26CHANGING MEMORY LIMITS

26PROPRIETARY NOTICE

What is "Tiny Pascal"?

Tiny Pascal is a modified subset of the Pascal programming language
as defined by Kin-Man Chung and Herbert Yuen in BYTE magazine September,
October, and November 1978.

‘‘Tiny Pascal is an integer only language, similar to Integer BASIC
in the Apple II. The comparIsorT~Between Tiny Pascal and a full Pascal is
analagous to the comparison between Integer BASIC and Applesoft.

Tiny Pascal is very well suited for writing games _ __an.d__systems
software for the Apple II.
compiler are compatible with existing Apple Hardware/Software products
(i.e., the DOS, printer interfaces, modems, etc.).

Databases created by Tiny Pascal can be manipulated by Applesoft or
Integer BASIC. Likewise, data created- by~Applesoft or Integer BASIC can
be read in, manipulated, and written out using Apple's DOS.
no new DOS
Why Pascal in the same manner that you would from BASIC.

What is a "Compiler"?

Programs created using the Tiny Pascal

There are
commands to learn. You create and maintain disk files from

Both Integer BASIC and Applesoft are interpreters. An interpreter
reads one line of text at a time and executes the statement.
Interpreters are very effective for interactive program development,
unfortunately they are very slow. Compilers, on the other hand, take the
textfile created by the user and generate machine code for the specific
processor. Compiled programs run very fast (often 10-20 times faster)
than an interpreted program. The drawbacks to a compiled program
include: (1) Program development is no longer interactive, increasing
the difficulties associated with debugging your programs. (2) Machine
code versions of a program often require more memory space than
interpreted versions. (This is especially true if a good interpreter,
such as Integer BASIC, is being used.)

Despite these drawbacks often speed is very important so a compiler
st be used.

What is "P-code"?

The Tiny Pascal compiler does not generate 6502 machine code. It
generates machine code for an imaginary macFTlne caTllTd' a~ ,f P-macFTine " .
Since this P-machine does not exist the P-machine has to be emulated by
the 6502 microprocessor. In effect the P-machine code gets interpreted
by a 6502 program - the P-code interpreter.

Since the P-code is being interpreted it will run much slower than
if 6502 machine code were produced. However, the interpretation of
P-code is much faster than the interpretation of BASIC so Tiny Pascal
programs will run 2-4 times faster than, an equivalent BASIC^program.
P-code has two other advantages*. First, P-code is very compact"."

-1-

sion 1.0k. i. W^j 4. tUUillld t'CiiUvl 1- J t J •' v_ L.« l U ■J

program written and compiled in Tiny Pascal will only require 1/2 to 3/4
the space required by an equivalent Integer BASIC program. By
comparison, a Tiny Pascal program compiled directly to machine language
would probably require 2-3 times the memory (of the Integer BASIC
example) just to hold the program.

The second advantage to P-code is the fact that it makes the Tiny
Pascal compiler easier to write, thereby freeing up even more memory.

So Tiny Pascal is a compromise between a true compiler and an
interpreter. P-code is very compact, like an interpreter, but runs
slower than the actual 6502 code.

What do I get when I purchase "Tiny Pascal?"

The Tiny Pascal system includes the P-code interpreter, a Pascal
monitor/ command interpreter, the Pascal compiler, an editor, source
listings of the editor and monitor, a set of library subroutines which
allow you to perform graphics manipulationsi re ad _t he.paddle s, switches ,
e"6"c.’ (source listing is provided), several Tiny Pascal programming
ejj^mples including Cannibals (a game) and Detoken (a program which
c :okenizes Integer BASIC programs).

How is the Tiny Pascal system used?

The Apple will clear theThat's easy! Boot the disk provided,
screen, print a "coldstart" message and prompt you for a command.

1To get a menu describing each of the commands (press return,1. The
Pascal monitor will print onto the video screen E(ditor)7 C(ompiler),
U(ser), B(ASIC), ~D(OS), L(OAD), S(AVE), F(ENCES).

1The parentheses around all the first characters simply means you
_onJ.y need to press the first .character of^each._c_oiiun_and to invoke the
desired' function. All commands must be terminated by a Return. (This
prevents you from automatically executing a function when you
accidentlly hit a key.) Note that the Pascal monitor only l_ook_s at the
first key pressed. EAT <cr>, Elephant <cr>(Egads~"<cr> (where <cr> is
return) all put you into the editor.

-2-

Version 1.0Programma PascalAug 1979

What do all these commands mean?
J

B-B(ASIC):Returns you to BASIC (A/S or Integer, depending). To
prevent possible damage, to the Tiny Pascal system you,

% shou.LcL«~^nuflgd iately set LOMEM:20480. This wTTT prevent
■^damage to the Pascal system, However any source file or

user program may be destroyed. If you wish to prevent
possible damage,.to a text file you_ sKouTd self LOMEM even^

ITTqfief... (eTg , 327!T7T~To TeEurn to ' EHe""Pascal” sy'stem tfype
'''Cali 2048. ------ *---- *

1

1

RESET:Actual system reset. On an Apple II system (without the
auto start ROM) RESET will deactivate the DOS and jump to
the Apple monitor. If you have an Apple II plus or the
auto start ROM, the Reset key is undefined. Sometimes it
will boot the disk, other times it will return you to
BASIC.

!D-D(OS) :~D means control D. This allows you to execute a disk
command ..directly from the Pascal monitor. Simply type

control D and ' then the DOS command fo1lowed by <cr>.
Note: YoU'“do~hot need to hit relfurn after the control D.
Example: command: ~D catalog <cr>

L-L(OAD):Loads a file into memory, beginning at the fence. You can
(1) Hit return

will prompt
(2) Type L (plus any number of

followed by

specify a filename in one of two manners,
immediately after the L. The Pascal monitor
you for a filename.
non-blank, non- carriage return characters)
at least one blank. After the blank specify the filename 1followed by^<cr>.

Examples:
Command: L <cr>
File: Test

Command: L Test

Command: LOAD Test

etc.

E-E(ditor):Involves the Pascal system editor. The editor will be
described in more detail later.

S-S(AVE):SAVES the last file edited or the last program compiled
onto the disk. Syntax is similar to the L(OAD) command.
Warning: You cannot L(OAD) and then immediately S(AVE) a

-3-

V CIS ion 1.0l' i. o l a nun a t'dSuulAluj L'J i j

source file. If you do not look at the source file with
~ the ecTi1foT,/ the Pascal monitor does not know how long the

file is and will try to S(AVE) it with a length of zero.
The resulting syntax error returns you to BASIC.

C-C(ompile):Compiles the Tiny Pascal program currently at the FENCE
(the fence will be described later, don't worry!). The
COMPILE/SYNTAX C,S) : message indicates that the compiler
has two options and that the default option is (s)yntax.
The syntax option tells the compiler to go ahead and
compile the program but don't generatFany P-code. Th~is
allows you to make sure that errors do not exist in
program before the actual
select the default option type "S'* or simply hit

“The compiler will" begin compiling your program, printing
the current line number to the left of the line. When an

is detected the appropriate message will be

your
compilation takes place. To

return.

error
displayed and you will be returned to the Pascal monitor.
_You^jnay now enter the .editor , correct the problem, then
recompile the program using the syntax option once again.
When the program compiles successfully you can compile
the program using the (C)ompile option. At the command

'level type <cr>" when" tfie~ Apple displays "Compile/
SYNTAX (S) /Type_/'C^) This will instruct the compiler to
^generate P^code "for your Tiny Pascal program. Upon
"pressing "C" the'l?ascal compiler will ask you where you
want the P-code to be stored during compilation. It will
suggest the current fence value. Since your textfile is
currently sitting at the fence the P-code will wipe out
part of your program should you "desire to select the
’default value. “Since"the program is usually shorter than
the source it is possible for the two to co-exist in
memory at the same time. When compilation of the program
is complete the source fiUTis considered DESTROYED. (So

jnake sure you've saved it to disk beforehand.) When you
press "C“ for compile the compiler will respond with

/

/

P-code ADDR (5000):

where 5000 is the current (HEXjy fence value. If you do
not want to wipe out the textfile in memory or you would
prefer to have the P-code stored in memory somewhere
besides the fence you can specify_.this location by typing
a four digit HEX number after the colon. If the fence is
okay with you simply type <cr>.
illegal hex digit, or more
Apple will keep at you and make you type the address back
in. Note: Backspace is an illegal HEX digit!

1
Should you type, an

than four hex digits, the

Warning: If you specify that the P-code be stored in
memory beginning somewhere in the middle of the source
file you will destroy the textfile before the compiler
gets a chance to compile it. Result:
undeclared identifier. If you change the P-code ADDRESS

104 ,Error

-4-

Programma Pascal Version 1.0Aug 1979

make sure that you specify an address beyond the .las,t._
"“character in your textfile (the editor provides you with

~ the required . .information),. Once you've informed the
compiler where the P-code is to be stored c\
compila.tji.on, you must tell the compiler where the P-cocfe

'~wTTlbe'stored WHEN THE PROGRAM IS RUN. 6

When the compiler asks you for

P-CODE ORIG (5000) :

you can specify this information. The default value will
be whatever value you decided on for the P-CODE ADDR
previously.

If you override the default with, let's say P-CODE
ORIG (5000):3000, then you have made a promise to the
compiler that you will load the program to_that_location
before tYyTng ~ to" run it. You can move the program by
using the Apple II system monitor move command or by
specifying the address in the DOS BLOAD instruction. Or
you can write a Pascal program to move it for you.

Example: let's compile CANNIBAL.S into a useable program.

1) L(OAD) Cannibal.S (i.e, L CANNIBAL.S)
2) Compile (i.e, command:C)
3) Select compile mode (i.e. Compile/ SYNTAX(S):C)
4) Use default values for P-CODE Address and P-code orig.
(i.e, P-CODE ADDR (5000):<cr>
P-code orig (5000): <cr>)

The compiler finishes with the status message describing the size
and location of the program then returns to the Pascal monitor.
You may now save the compiled program onto disk by using the S(AVE)
command. Be careful not to name the program after the source file
(i.e, Cannibal.S) or you will replace the source file with the code
file. By convention source files should have ".S" suffixed to the
program name and code files should suffixed with M.C,;

Warning: You must compile a program with the (C)ompile option
before you can'use the S(AVE) command. The S(yntax) option does not
produce a program file. Let's name tHeT program "Cannibal.C" and
save it offfco* <3isk .

Command: SAVE Cannibal.C <cr>

-5-

t'sion 1. t)l'Ui»calL cJMUiivJ V ct \ U «J i. j i J

1is used to run a program.
Command sU"”’<c*rT)
Run ADD^T5000*) :

U-U(ser):

The Run ADDR (5000): informs you that, unless
otherwise specified, the current Pascal program at
location 5000 will be executed. Once again you can
override the default by specifying a four digit Run
address. For example, if we specify Run ADDR
(5000) : 3000 we will end up in the editor (which
begins at location 3000 - better make sure a
textfile is loaded first however*).

Since we just compiled Caniabal.S at 5000 all
we need to do is hit return to begin execution. To
return from Cannibal to the Pascal monitor first
play Cannibal. If you get impatient (or
frustrated!), use the RESET sequence.

F-F(ENCE): sets the lower and upper bounds of the_Pascal STACK..
as well as”~tKe f ence. The FENCE is described in more
detail in the section on more advanced topics.

What does "Tiny Pascal" look like?

Tiny Pascal uses the same program structure as regular
A Tiny Pascal program begins with a "PROGRAM" statement.

The program statement is of the form "PROGRAM progname"; where
progname is the program name which is chosen by the programmer. It
can be any .length but only the first eight characters,^ are
significant. Beyond the eighth character all further characters are
ignored-.-

Pascal.

Examples:
Program Test?
Program Hires;
Program Thisisalongname;
Program Thisisalongername?

Note: As far as the compiler is concerned "Thisisalongname"
and "Thisisalongername" are one and the same since the first eight
characters match.

theFollowing the constantstatementprogram
declarations. Constants are simply handy abbreviations,
not exist at program run time, and take up no memory space,
are used to increase program readability.

comes
They do

They

For Example: The constant declaration BS=08; simply' says
whenever I say "BS" I really mean to use decimal 08. To declare
some constants type "CONST" after the "Program" statement. After
the "CONST" you can declare as many constants as you desire,

-6-

Programma Pascal Version 1.0Aug 1979

separated by semicolons.

Example:
CONST BS = 08; CR=13;
TRUE=1; FALSE=0;
LF=10;

Do not confuse constants with variable names. You cannot assign__a
value to a constant anymore than you can assign a value to 8.
constant t‘ i o n~“i"S~'"dpTfiona 1, if you don't have any constants
do not put a "Const" in your program.

The
you

Following the constant declarations comes the variable
declarations. Variable declarations begin with the word "VAR".
Following the "VAR" come the individual variable declarations. ALL
VARIABLES IN A TINY PASCAL PROGRAM MUST BE DECLARED BEFORE THEY ARE
USED. The"only' data type currently ""supported by Tiny ‘'Pascal is
Integer. Arrays of integer are also allowed. To define an integer
variable use the following form.

VAR Variablename:Integer;

As with the "CONST" declarations many variables can be
declared by separating the variable declarations by a semicolon.

EG;
VAR I:Integer; J:Integer;
K:Integer; L:Integer;

Alternately, you can declare many variables at the same time
as follows.

[
Var I,J,K,L:Integer;

-7-

vo lb ion 1.0l l l umiiia 1'u^Ccii.'vUvJ 1 J f J

Arrays are specified by declaring a variable to be "ARRAY [n) of
Integer" where n+1 is the number of elements you wish in the array.
Array subscripts begin at 0 (not one!) and go through n. Only single
dimension..arrays are supported and range checking is not performed at
'runtime. If your subscript exceeds the maximum size declared you will
probably mess up the Pascal stack. No error message will be printed.

Examples:
Var I:Array [6] of Integer; r-
J,K:Array [4] of Integer; •- L.
L:Integer;

I is an integer array of size 7, J and K are integer arrays of size
5, and L is a simple integer. Your array subscript must be either a
numeric constant or a. symbolic constant declared in the "Const"
declarations. Another variable name is not allowed (as in BASIC). To
get the square brackets, "(" and "]" use control T and control Y in the
Pascal editor. As with the "Const" declarations, the "Var" declarations
are optional.

come the PROC and FUNCdeclarations
These will be discussed in greater detail later on.

Following
declarations.

the "Var"

After the FUNC and PROC declarations comes the Main Program. The
main program consists of the reserved word BEGIN followed by Pascal
statements which are separated by semicolons. After the last statement
in the program comes the reserved word END followed by a period.

What statements are available in "Tiny Pascal?"

The Assignment statement:

The assignment statement ("LET" in BASIC) is of the form:

Varname:=<expression>

Note the use of ": = " for the assignment statement. No type checking
is done so all of the following are valid:
O

Examples:
I:=10 ;
I:=1+1;
I:=1+1C‘;
I:=Num-'0 ' ;
J[1] :=1 * 2+' I'+1;

whenever an Ascii character is encountered, the ASCII code for that
character will be used. This is somewhat like the "CHR$" and "ASC"
functions in BASIC. The Arithemetic operations are as follows. (Listed
from Low precedence to High precedence.)

-8-

\cLbion 1.0L J J O U 14. >J'J l • i»11 • *J••'U'J

Hexadecimal Constants

Sometimes it is much more convenient to use a hexadecimal constant
than*%a decimal constant. This is particularly true when accessing
absolute addresses in the computer memory.

A 16-bit hexadecimal constant is specified by preceeding a
four-digit hexadecimal number with a percent sign (%).

Examples:
I:=%FDED; CR:=%000D;
I:=%00 20 ?
J:=%000A?

Note that hexadecimal constants must be exactly four characters
long, so leading zeros must be typed in.

Handling Characters and Strings

Since Tiny Pascal is integer only you might get the impression that
string handling facilities are provided. Fortunately this is not the

case, characters can be handled by Tiny Pascal.
no

The assignment
I: = 1 A 1 ;

where I is an integer, places the character ’A1 in the low order
byte of X and zero's the high" order byte. Arrays of integer may be used

"to hold character strings.

Read and Write

I/O is facilitated by the Pascal Read and Write statements. Tiny
Pascal write statements come in four flavors: write character, write
^^cimal value, write string, and write hexadecimal value.

Write (I): will print the low order byte of I as an ASCII
character.
Write (I#): will print I as a decimal integer.
Write (1%): will print I as a hexadecimal value.
Write ('string'): writes the desired string out to the CRT.

Naturally you can specify more than one element in the list by
separating the variables/strings with commas. Tiny Pascal does not
divide the screen up into "fields" as do the BASIC interpreters. Each
element will be printed with no interleaving blanks.

Example: Write
current value for I.

I#); prints "I=nnnnn" where "nnnnn" is the('1= * ,

r -10-

Programma Pascal Version 1.0Aug 1979

Low Precedence +, -, AND, OR
Medium Precedence *, DIV, MOD, SHL, SHR
High Precedence Not, - (unary)

A few notes are in order. The assignment I:=J AND K; performs a
bitwise AND on all .16 bits of J and K. The result is stored in I.
Likewise I:=J OR K; performs a bitwise OR of J and K.

is used for multiply, as you would expect.
„ for, ... division.

"DIV*' is used only for Integer divisions.
*supporTffloating point "/" is not used,
module function. "SHL" and "SHR" provide _b.it shifting facilities,
performs a "shift left" and "SHR" performs a "shift right".

*" But you must use
ifaivisions andIn Pascal "/" is used only for REAL

Since Tiny Pascal does not
"MOD", of course, performs the

"DIV"

"SHL"

Example:
I: =J SHL 2;

fts J two bits to the left and places result in I. NOT inverts all
bits, and (-) takes the 2's compliment. Parentheses may be used to

„rovide a change in precedence when required.

The MEM Array.

Often, in a microcomputer environment, it is necessary to access
absolute locations in the memory space. In BASIC Peek and Poke provide
this facility. In Tiny Pascal a phathom array "MEM" is used. Basically
the array "mem" is an array of bytes 64K long. MEM [0] corresponds to
"location zero in memory, MEM [1] corresponds to location one, etc.

To simulate a Peek simply use the MEM array within
the

the expression
right side of an assignment statement. For example, I:=MEM[33);

is the same as I=Peek(33) in BASIC. To simulate a POKE statement use
the MEM on the left side of the assignment statement. Example,
MEM[33]:=33; is the same as Poke 33,33 in BASIC.

on

O

-9-

Version 1.0Programma PascalAug 1979

Note: Write (33); does not display "33" onto the CRT as you might
Rather it displays the character “ i". Remember, unless youexpect.

suffix the list element with a "#" or "%" it will be pointed as an Ascii
character. Also: Write does not automatically eject a c^etucn^ after the
last element has l5een printed: You have to specifically provide the
return. This can be done in several ways. For instance, WRITE (1,13);
will print the current character in the lower order byte of I and then a
carriage return (13 is the decimal value for a carriage return).
Possibly a better way to print a return is to define a constant, CR,
equal to 13 (CR=13) and now simply use(WRITE(I, CR) .'j This will improve
the readability of your program considerably.

t

Using Apple DOS from Tiny Pascal.

You use the Apple DOS in Tiny Pascal in the same manner that you
use it in Integer BASIC. To execute a DOS ^command you simply "write"
control-p, followed by a DOS command, followed by a "return. Th'e—last

'character-" pr in ted prior to the control-D must be a return.

Define a constant "CTLD" equal to 4 (the decimal value for
wjntrol-D). Now you can execute DOS commands as follows:
m

i

Catalog1, CR): Prints a catalog.Write (CTLD,
Write (CTLD, 'OPEN Test', CR): Opens a file call test.
Etc.

To turn on printers and other I/O devices you can use the DOS
command IN# and PR#.

Example:

PR#2'_, CR) : turns on output device in slot 2.Write (CTLD

Wr ite IN#',I, CR): turns on the input device whose slot(CTLD,
number is contained in the variable "I".

The Read statement is used in a manner similar to the write
a^tement, except you cannot read a string of characters with a single
^^Rd statement. You must read a__single character, pack it into an
V .teger array, and read the next character,~ etc. This will give the
appearance to the user that he is entering a string of characters.
Library.S.2, provided, contains several string input/output routines.

The automatic conversion routines "#" and "%" may be used in READ
statements. (READ(A#f) will read a decimal number into the variable A.
The user should re's pond by entering a string of decimal digits followed
by a blank, comma, or carriage return. If the input string is empty,
that is, if only a blank, comma, or carriage return was entered then A
will be'set to 0. If the number is invalid it must be re-entered.

-11-

\n

vctsion 1 0aillllio t'abCdiAu>J L'J / J

The IF-THEN-ELSE Statement

The IF-THEN-ELSE Statement in Tiny Pascal has the form:

If <condition> Then statement (Else statement)•

>The ELSE portion is optional. Statement may be either a simple
statement (a single Pascal statement) or a compound statement (to be
described later).

Examples:
B=1, B#);If A=B then write (A#) ELSE write ('A=', A#,

If I<=J then if K=J then write (K#)
ELSE write (J) ELSE write (I)

In the second example some ambiguity might arise due to the use of
the nested If's and Else's. The simple rule of thumb in this situation
is: Each ELSE goes with the last "UN-ELSED" If. In the previous example
the "ELSE write (J)" goes with the "If K=J" and the "ELSE write (I)"
goes with the "If I<=J".

Relational operators are as follows:

< : Less Than
<= : Less Than or Equals

= : Equals
<> : Does Not Equal
> = : Greater Than or Equals

> : Greater Than

In addition, TRUE is any value other than zero and FALSE is zero
(you may want to define two constants "TRUE" and "FALSE" with these
values.) . So now. . .

I :=1;
IF 1-1 THEN WRITE(I#)
ELSE WRITE(1+1);

write "1+1" to the CRT< since 1-1=0 (which is false).will
^nner the relational values may be used in assignment statements.

I:=2;
I:=1=2? sets I to 1?
I:=I=10; sets I to 0;
etc.

In addition the operators
in "If" statements.

In the same

OR", and "NOT" may also be used"AND",

Example:
If ((A=B) AND (K=L)) OR (M=N) then write (N#)

-12-

Version 1.0Programma PascalAug 1979

Up till now very little mention has been made of semicolons other than
the fact that they are used to separate statements. Please note that "If
<cond> Then <statement 1> Else <statement 2>" itself constitutes ONE
statement. You cannot place a semicolon after statement 1 or the Tiny
Pascal compiler will think the end of the If statement has been reached.
As a result the Else <statement 2> will no longer be connected to the If
statement and an error will result.

The While Loop

Pascal supports a looping construct known as the While Loop. It has
the form:

While <cond> DO <statement>;

where statement is a simple statement or a compound statement.
<£&nd> is any expression returning a TRUE or FALSE value. As long as the
r^dition is true the statement is executed. When the condition becomes
'-.ulse the loop will be exited.(

Example:
I: =0
While (I<=10) DO I:=I+1; (* Delay loop. *)

The syntax and use of <cond> is the same for the while loop as it
is for the If statement. The while loop tests the condition at the
beginning of the loop and then executes the statement if and only if the
condition proved to be true. The looping continues until the condition
becomes false. If the condition is false when the while is first
executed the statement after the DO will not be executed at all.

The Repeat... Until Loop

Unlike the While Loop, statements within a Repeat until--,loop always
get executed at least once. This is because the condition gets tested at
^jtETxrttom of th_e__lpop rather than at" the beginning of the loop. There

two other major differences. First, the loop is repeated only if the
Vendition turns out to be false (opposite of the while loop) and second,
you are not limited to one simple or compound statement but you can have
as many statements as you desire (separated by semicolons). The
Repeat... Until Loop has the following form:

fRepeat
<statement 1>;
<statement 2>;

<statement n>
UNTIL <cond>

You may have none, one, or as many statements as you desire between

-13-

Aug 1979 Programma Pascal Version 1.0

the Repeat and Until as long as they are separated by semicolons.

Example:
Repeat

Write ('Enter Answer (Y/N)');
Read (Answer);

Until (Answe-r = 'Y') OR (Answer = 'N');

-14-

version i.., t.

THE FOR LOOP

The FOR loop in tiny Pascal is very similar to the FOR/NEXT loop in
It is of the form:

FOR <varname> := <initialvalue> TO <finalvalue> DO <statement>;
-0R-

FOR <varname*> := <initialvalue> DOWNTO <finval> DO <statement>?

BASIC.

►

As with the WHILE loop only one statement (simple or compound) may
follow the DO. There is no stepsize allowed other than 1 or -1. (for a
stepsize of one use "TO", for a stepsize of minus one use "DOWNTO").

EXAMPLES:
FOR I:« 1 TO 10 DO WRITE(11=1, I #);
FOR I: = 1 A 1 TO '2' DO WRITE(I);
FOR I:= 10 DOWNTO 1 DO WRITE(I#);

THE CASE STATEMENT

The CASE statement is a much more powerful version of the ON...GOTO
in BASIC. It has the form:#

l CASE <varname> OF
<constl>:<statementl>;
<const2>:<statement2>;
<const3>:<statement3>;

<constn>:<statementn>
ELSE <statementn+l>

END;

The ELSE <statementn+l> is optional.
NOT

can be either simple statements or compound statements.

semicolon
These statements

Please note that a
ALLOWED after <statmentn> and <statementn+l>.is

At execution time the Apple II will take the value contained in
<varname> and compare it with <constl>. If a match is made <statementl>

Otherwise <varname> gets compared with <const2>/ then
<const3> etc. until a match is made. If a match is not made amongst all
the available constants the ELSE statement (if present) will be
executed. If the ELSE statement is>not present none of the statements in
the-CASE statement will be executed, and program execution will continue
with the next statment after the CASE statement. EXAMPLES:

is executed.

(

I: =0;
CASE I OF

1:WRITE('1=',1#);
2:WRITE('J= ',1+2#);
3:WRITE(' K= ',K%)
ELSE WRITE(‘NOT THERE 1')

END;

This will write "NOT THERE 1" on the terminal.

-14A-

PROGRAMMA PASCAL Version 1.0Aug 1979

I: =0;
CASE I OF

1:WRITE(I#) ?
2:WRITE(2*1#)

END;

This will do nothing since a match will not be made and there is no
ELSE" clause.\ „

I:=0 ? CASE I OF
0:WRITE('ZERO') ;
1:WRITE('ONE') ?
2:WRITE('TWO')

END;

This example prints "ZERO" on the crt.

<constl>,
be variables,
rewarded with an error message. •
If the CASE statement is of the form:

<const2>,
Should you try and use a variable name you will surely be

. , <constn> must be constants, they cannot

CASE I OF
<constl>,<const2>,...,<constn>:<statementl> ?
<constn + l>,<constn+2>,...,Cconstm>:<statement2> ?
ETC.

then <statementl> will be executed if a match is made between I and
of <constl> ... <constn>.
<constn+l> ... <constm> match up with I.

any
Likewise <statement2> gets executed if any of

COMPOUND STATEMENTS

Up till now we've been limited to one statement is all of our
examples except the REPEAT... UNTIL. In many (most!) applications more
than one statement is required.

Compound statements may be used anywhere single statements are
allowed are are of the form:

BEGIN
<statementl>;
<statement2>;

<statementn>
END;

-15-

PROGRAMMA PASCALAug j Version 1.0

Examples:

FOR I:= 1 TO 10 DO BEGIN
IF (I<=9) THEN WRITE('
WRITE(11=1,1#)?

Ii);

END;

IF I=J THEN BEGIN
IF K=L THEN WRITE(L#); END ELSE WRITE(I#);

Note in particular the use of the BEGIN .;. END to force the ELSE
to be associated with the first IF statement.

COMMENTS

Comments in Pascal are delimited by "(*" and
allowed any where a space is allowed and
Unlike BASIC,
do not require any memory in your program,
program performance.
program so they should be used generously.

)". Comments are
the compiler ignors them,

comments in Pascal do not exist at run time, and as such
Nor do they degradate

Comments do improve the readability of your

>« *

Examples:

(* THIS IS A COMMENT *)
FOR (* COMMENTS ARE ALLOWED HERE! *) I:= 1 TO 10 DO WRITE(IS);

PROCEDURES AND FUNCTIONS

Tiny Pascal supports the use of procedures and integer functions.
A procedure (or function) definition is very similar to a program
definition. The first line of a procedure definition is

iu 11>£JJ-T7 I M 1
PROC <procname> (<optional parameter list>);

This defines a procedure by the name <procname>.

O Following the PROC statement come the CONST declarations.
Constants declared within a procedure cannot be referenced by the
eTTernal program. These constants are “TocaP' To the current
procedure. A procedure, however, is. allowed to use constants and
variables declared .in the main routine. Such constants (and variables)
are considered "global". For a complete description of global and local
constants, variables, procedures, and functions check out the section on
"scope" in any textbook on Pascal. The concept of "scope" is beyond the
scope of this paper I

-16-

Version 1.0L'dbCaiaiUiiicie\ U'-j l.'J i J

Following the CONST declarations come the variable declarations,
once again, any variables defined wil -be local and inaccessable by the
main procedure.

After the variable declarations come the internal procedure and
function declarations: (Yes, you can have a procedure inside a
procedure). After the procedure and function declarations (if any)
there is a BEGIN, followed by the statements in the procedure,
terminated by an "END;".

Procedures are "invoked* or "called" simply by using the procedure
name as a statement in the program.

) EXAMPLE:

PROGRAM TEST?
VAR I:INTEGER?

PROC CRLF? <----
CONST CR=13 ? \
BEGIN

WRITE(CR)? J
END?

BEGIN “
WRITE('HELLO THERE’)? CRLF?
WRITE(’HOW ARE YOU TODAY?’)? CRLF?-—^

}END.

The program returns from a procedure by encountering an "END"
statement. It is not possible to exit from the middle of a procedure or
function via a "RETURN" as in BASIC. You always enter a procedure at
the top and exit at the bottom.

Parameters are used to pass information
instance, suppose we want to simulate
SPC(I) prints I spaces onto the CRT.

to the routine,
the SPC procedure in BASIC.

The procedure to do this could be:

For

PROC SPC(I);
VAR J:INTEGER? BEGIN

FOR J:=l TO I DO WRITE() ?
END?I

Now, in our mainline program, if we write
WRITE(’HELLO’)? SPC(2)? WRITE(’THERE’)?

It would print "HELLO THERE" with two blanks between the "HELLO" and
THERE". You can have as many parameters in your list as you need,

simply separate them with comma's.

i.e,
PROC TEST(I,J)?

BEGIN WRITE(I#,J#)? END?

Is called by TEST(3,2) for example.

-17-

Version 1.0Programma PascalAug 1979

Functions are set up in the same manner as procedures. Instead of
“PROC" you use "FUNC", and then somewhere in the body of the function
you are allowed to make the assignment:

'<f uncname> : = <expression>;

The value will be returned when you exit the subroutine. Functions are
invoked by appearing anywhere an expression is legal, some examples:

I:=<funcname>;
WRITE(<funcname>);
MEM[<funcname):=<expression>;
ETC.

In the above examples simply replace <funcname> with the name of
the function you wish to use.

EXAMPLE:

PROGRAM TEST?
VAR I:INTEGER;
FUNC ADDl(I)?
BEGIN

ADDl: =1 + 1;
jEND ?_

BEGIN
I:=ADD1(2);

END.

I now equals 3.

CALL

Often it is desirable to call machine, language programs directly
This 'is Handled by tEe'FuTltin procedure

As an argument, you pass CALL the address of the machine
language subroutine, and whatever 6502 machine language program is
sitting at that address will be executed. This is very similar to the
ICALL" in BASIC.

from a Pascal program.
“CALL".

I EXAMPLES:
CALL(-936)?
CALL(-151)?

HOMES AND CLEARS SCREEN.
PUTS YOU INTO THE APPLE MONITOR.

USING THE PASCAL EDITOR

The editor provided with the Tiny Pascal system is a line oriented
editor written by Herbert Yuen. The source for the editor (written in
Pascal) is in the file "EDITOR.S".

You may enter the editor by typing “E” while in the Pascal
monitor. The Apple II will respond with:

NEW/EDIT(E):

-18-

Programma Pascal Version 1.0Aug 1979

By pressing "E" or <cr> you can edit a file existing (created
previously or L(OAD)ed in at the Pascal monitor level). By pressing "N"
the editor will clear any existing text and place you directly in the
"insert" mode.

Once you are in the editor (by using the "E" command or by getting
out of the insert mode when editing a_N(EW) file) you will be at the
editor command level. 'Valid commands areT ^%

i

!

I

-19-

version 1.0r L L utlliilti L^diaCcilXJJJ

n' refers to a decimal number in the range 1-999.

L: list entire file.
P: prints current line.

P~: prints top line.
P*: prints last line.

* Pn: prints the (hext^ 'n' lines.
R<string>: replaces current line by <string>.
A<string>: appends <s._t_rinq> to the end of the current line.
---------- - D: deletes currentTine.

D": deletes the first line.
D*: deletes the last line.
Dn: deletes the next
X: status, prints size of file etc.
U: move the line pointer up one line.

CJn: move the line pointer up *n' lines.
N: move the line pointer to the next line.

Nn: move the line pointer past the next 'n' lines
E: exit the editor.
Is enter__ the_ insert

~~ 'fi 1 e) . All foTIowing~~text is inserted AFTER ..,the
line. You exit the insert mode by typing <cr> as the first
character of a new line (to insert a blank line type at
least one space prior to the <cr>). If the textfile is
empty (when editing a N(EW) file) you must insert at least
one line of text before exiting the insert mode.

I": Insert text before the first line.
I*: insert text after the last line.

M: enter intra-line editing mode.
character. Commands in the intra-line editing mode are:
aA: copies current character.
aG: copies entire line.
AH: backspace one character.
AS<c>: copies all characters up to <c>.
AN: re-edit new line.
<cr>: exit modify mode.

‘n lines.

mode (automatic when editing a N(EW)
current:

denotes a control

In addition to the Pascal editor you may use the Apple Pie (version
0) text editing system to create source files for creating tiny Pascal

Since Apple Pie textfiles and Tiny Pascal textfilessource programs.
are incompatable, Pie textfiles must be converted before attempting to
compile a Pascal program created by Pie. To accomplish this run the
program "CONVERT/PIE" (a source is provided).
Apple Pie cannot be modified by the tiny Pascal editor (even after
conversion by "CONVERT/PIE".

Programs created using

Since neither Pie nor the tiny Pascal editor allow you to insert
control characters into the source code you must use constants with the

Forappropriate value instead of the actual control character,
instance, to display a catalog from a program you could use

WRITE(CTLD,’CATALOG’,CR);

-19A-
c

7^ * -f $ 5 1 ! l •C ‘V.'

Version 1.0proycamma PascalAuy 19 7 9

Where CTLD=4 and CR=13. The "[" and "]" characters are directly
available from the keyboard using control-t and control-y.

Tab characters. The compiler and editor both recognize ’ the TAB
character (control-I). During listings two blanks are substituted for
each TAB character.

MORE ADVANCED TOPICS

ERROR MESSAGES

The error messages printed by the compiler are the standard error
in PASCAL:USER MANUAL AND REPORT by Jensen & Wirth. In

Error 999 indicates that
static function/procedure nesting level, or the number of

permissable variables in a function/procedure, has been exceeded.

messages found
addition error 999 may occassionally appear,
the

MAXIMUM NUMBER OF VARIABLES

The total number of integer variables (including each element of an
array) must not exceed 2048 (decimal). If you need an array of 4000
elements you must break it into two arrays of 2000 elements each. one
array must be declared at the current level of procedure or function.
The second array must be declared within an internal procedure or
function. The arrays must have different names (if both are to be
accessed). The inner procedure can now "see" both the outer array and
its own. The main body of the outer procedure can now be a simple call
to the inner procedure.

If a function/procedure is 16 levels deeper than the outermost
function it can no longer access variables in the outer
function/procedure. This highly unusual situation is flagged with the
error 999 message.

RUN TIME ERRORS

Runtime errors will return you to the Pascal monitor, which will
(entify the type of error and the P-code address of its occurance.
This can be matched against the compiler listing to determine in which
line the error occured.

SYSTEM FLAGS

The 6502 P-code interpreter maintains an eight bit flag register at
location %000D hex which is used during runtime errors. Four of the
eight bits are used to determine whether or not a runtime error will be
flagged.

-20-

Programma Pascal Version 1.0Aug 1979

The following bits are defined:
BIT 0: arithimetic overflow (>32767)
BIT 1: division by zero (ZERO DIVIDE)
BIT 6: invalid opcode (*DAMAGE *)
BIT 7: stack overflow (stack full)

sThe appropriate -bit is on (1) if the error is enabled and off (0)
if disabled. The invalid opcode and stack overflow bits cannot be
disabled. The defaults are zero divide enabled and arithimetic overflow
disabled. This is because the compiler uses + and - for address
arithimetic which sometimes produces arithemetic overflow. Your program
may wish to enable arithimetic overflow for a few instructions, 'the
disable it again.

MEM[% 00 0D] := % 0 0 FF; ... MEM(%000D] := %00FE;

PASSING PARAMETERS TO MACHINE LANGUAGE SUBROUTINES VIA CALL

is possible to pass certain values to machine language
Subroutines invoked via the “CALL" statement. Whenever a CALL is made
the accumulator is loaded from location %001A, the X-register is loaded
from location %001B, and the Y-register is loaded from location %001C.
When the machine language subroutine returns the contents of the
registers are stored in their respective locations,
flexible management of data when calling machine language routines.

It

This allows

One very useful example might be hexadecimal output. Although you
can output a hex number directly from Pascal you are forced to output
exactly four hex digits with each hex write. Sometimes it would be nice
to be able to output only two hex digits at a time. The following
program will perform a memory dump outputting only two hex digits at a
time.

PROGRAM HEXDUMP;
VAR LOCATION, LOWER, UPPER:INTEGER;
BEGIN

WRITE(‘INPUT LOWER BOUNDS:'); READ(LOWER*);
WRITE('INPUT UPPER BOUNDS:'); READ(UPPER*);(

FOR LOCATION:=LOWER TO UPPER DO BEGIN
MEM [% 0 01 A] : =MEM [LOCATION-
CALL (%FDDA);
WRITE(
IF NOT(LOCATION MOD 8) THEN WRITE(13);

)?

END;
END;

-21-

vctsion 1.0aiiuild Pascalrtuy l y / j

MINIMAL RUN TIME SYSTEM

You may wish to overwrite the compiler and editor and use this
memory space for your own program. By setting the P-code origin at 1800
and then compiling (at 5000) then moving your program.to location 1800
you can run your program in a stand-alone environment. You can also use
the ‘monitor F(ENCE) 'command to make more room for variable storage by
setting low to 1800 and leaving your program at 5000.

If you would like an autostart capability, overwrite the Pascal
monitor with your program. RESET and *800G will then auto-execute your
program (at hex %1300) . However you must adjust the memory fences by
changing the defaults in the interpreter. If you save the P-code
interpreter and your program to disk, BRUN <progname> will auto-execute
your program. In addition, if the "HELLO" program on your disk BRUN's
the program, it will auto execute when the DOS is booted. For more
information see the section on the interpreter.

EXTERNAL PROCEDURES AND OVERLAY

Any program may call procedure and functions which are external to
it. The program should use the ordinary PROC or FUNC heading when it
declares the external procedure or function. However, in place of the
BEGIN ... END block of the procedure or function body, a single
hexadecimal constant should appear. When the procedure or function is
called, control will be transferred to that hex address,
heading of the external procedure or function should match the internal
heading of the calling procedure,
contains the declaration

The PROGRAM

For example, the Pascal monitor

FUNC EDITOR; (* PASCAL EDITOR *)
%3000;

The program line of the editor reads:

PROGRAM EDITOR;
k After the

any normal
Neither have any parameters (although both could).
declaration, the monitor treats EDITOR just as it would
internal function.

VERY HARD TO FIND BUGS

Programma Pascal does not check array subscripts to see whether or
not they are in bounds. If you store a value at position 10 of a nine
element array you will damage the stack. Since return addresses are
stored on the stack, you may find yourself in an embarrasing situation.

-22-

Programma Pascal Version 1.0Aug 1979

Another difficult but to detect is the use of zero instead o "O"
(oh) in a variable name, or a hidden control character which does not
print.

LIBRARY.S

Phillip Wasson has written some very useful (though untested by
Programma) functions and procedures. They are in the file "LIBRARY.S".
You may find them to be of interest.

Programma Pascal vs. Supersoft Pascal

Programma Pascal is a derivative of Kin-Man Chung and Herbert
Supersoft Pascal is also a derivative of TinyYuen's Tiny

Pascal for the Radio Shack TRS-80 and Northstar computers.
Pascal.

Assignments
all 16 bits as opposed to MEM, which only

See LIBRARY.S.2 for a procedure and

Supersoft Pascal has an additional array called MEMW.
and from MEMW transfer

transfer the low order 8 bits,
function which simulate MEMW.

L

Programma Pascal has added the external procedure definition and
the PROGRAM header, which work together.

Otherwise the two Pascals are quite compatable at the source level,
although their P-codes have been optimized for different environments.
It may be necesary to rewrite certain sections of code which have been

However,- translating
be an order of magnitude

designed to run on the different computers.
Supersoft Pascal to Programma Pascal will
easier than translating BASIC.

DETOKEN

Detoken is a program written by Randy Hyde which will
Integer BASIC program,

tfiles which can be edited by APPLE PIE.

"detokenize"
It can be used to create BASIC programm

(
LIBRARY.S.2

Contains several string handling routines which mimick many o.f
string routines in UCSD Pascal,
given.

the
Several other utilities are also

CANNIBALS

A programming example which demonstrates many of the features of
Programma Tiny Pascal.

-23-

THE P-CODES

A table of P-codes has been provided with this documentation,
special P-code, hex 30, is used as a Pascal breakpoint,
hex 30 will exit to the Apple II monitor.

One
When executed

THE INTERPRETER

P-code interpreter has been carefully designed to be a
The only locations which may need adjusting when moving from

appear in the JMP vectors and the

The 6502
black box.
the 6502 environment to another
following six bytes of default values.

0800
0803
0806
0809
0 80C
080F

JMP COLDSTART
JMP WARMSTART
JMP ERROR ENTRY
JMP READ BYTE
JMP WRITE BYTE
JMP SET MEMORY FENCES

■\

V
0812 - Default start address of P-code pgm (low order byte).
0813 - Default start address of P-code pgm (hi order byte).
0814 - Default starting PAGE of Pascal stack.
0815
0816 - Default HIGH memory page location.
0817 - Default SYSBIT error enable flags (currently hex $FE)

Default fence PAGE.

The interpreter itself was
assembler) The interpreter,
currently reside in
use HIRjSS graphics (and
current P-code interpreter wjill
wrong area. On tEe Pascal" disk'

“■^"ODETHlRES" ,
memory so that it will be out of the way of the first
page and the Apple's HIRES routines. To use "PCODE.HIRES"
first create and compile your program using the normal Pascal
system.
the codefile to disk. Load the binary file "PCODE.HIRES" and
then adjust the memory fences so that they are ABOVE your
program. Now you can use the "U(SER)" command from the Pascal
monitor to run your HIRES program.

written using LISA (a 6502
monitor, compiler, and editor

locations $800 - $4000. If you wish to
the Apple supplied routines) the

prove_to be located_in the
is a Binary file called

it is assembled beginning at location $4000 in
HIRES

- •

(Once the syntax errors have been taken care of, save

If you need the P-code interpreter assembled for a
different location please contact Programma and they will be
happy to assist you.

-24-

Version 1.0Programma PascalAug 1979

MEMORY REQUIREMENTS
\

Pascal occupies the following memory locations:

0000 - 001F:These are the zero page locations used by the
r 6502 P-code interpreter.

00DF:Zero page locations reserved fro DOS/Pascal
interface.

0800 - llFF:P-code interpreter and the compiler's reserved
symbol table.

12FF:A spare page for

00D8
)

storing
functions, patches, and so forth.

17FF:Pascal monitor. This is a Pascal program. The
source code to this program can be found in
the file "MONITOR.S", so feel free to modify
it and substitute your own improved monitor
here. The monitor is actually much smaller
than the space provided, so you have plenty of
room for growth.

1800 - 2FFF:Pascal compiler.
3000

builtin1200 user

1300

\

You will find the source in
4FFF:(LOW-FENCE) The stack.

3FFF:Pascal editor.
"EDIT.S".
All
stored on this

4 0 0 0
variables created in a Pascal program are

stack. The stack starts at
fence-1 and grows towards LOW.

5000 - 95FF:(FENCE-HIGH) User memory. This area is not
quite a part of the Pascal memory space. It is
used text.store
subroutines, and so forth. The Pascal monitor,
editor, and compiler will not normally access
or change any memory above HIGH.

to userprograms,

; %(p^ s.$ t*<ic(IF C PE '-JG IlOm E M

o tr/HjLT *.

LOVJ ^<14$
V v—t V* s

£ 4 ^
r ^F

-25- UU -\ ^ ^ g b s oo -a

- j ion X . fc)w. — i.tl.ltl w4" * -1 %J J '

CHANGING MEMORY LIMITS:LOW, FENCE, AND HIGH

The F(ENCE) command in the Pascal monitor allows the user to
specify the memory limits for a Pascal program. This is similar to
setting LOMEM and HIMEM in a BASIC program.

Instead of two memory bounds (as in the LOMEM/HIMEM commands) the
Pascal user, must set three memory bounds: LOW, FENCE, and HIGH. LOW is
the absolute smallest memory location usable by a Pascal program. It is
roughly equivalent to LOMEM. HIGH is the absolute highest memory
location usable by the Pascal program and is roughly equivalent to
HIMEM. FENCE resides somewhere inbetween LOW and HIGH and divides the
memory area between LOW and HIGH into two areas. One of these areas
(from LOW to FENCE-1) is reserved for variable storage. The other area
(from FENCE to HIGH-1) is reserved for program storage.

Should you ever get a stack full error it simply means that you
have not reserved enough memory for your variables (which are kept on
the stack) and as a result, you need to adjust the FENCE upwards towards
ttB. The default settings are LOW=4000, FENCE=5000, and HIGH=9600.

has been optimized for text editing when using the Pascal editor.
L..is will only leave enough room for approxamately 500-1000 variable
locations. Generally, except for smaller programs, you will want to
adjust the FENCE to give you more room.

/

PROPRIETARY NOTICE

Since many users will find Programma Pascal much easier to use (and
twice as fasti) as Integer BASIC it should not be too long before
programs written in Tiny Pascal begin to appear on the marketplace.
Although, in this paper, explicit instructions have been given guiding
the user in creating "stand alone/auto execute" Pascal programs,
Programma does not release rights on the P-code interpreter. All
information presented in this paper is intended for the sole use and
enjoyment of the original purchaser. Since we do not want to discourage
the propagation of quality software written in Tiny Pascal we can offer
£u four suggestions when selling your Pascal programs.

1) Sell the source listing (or file) only. The end user must
purchase Tiny Pascal in order to use your program.

2) Sell the P-code file only. The end user must purchase either the
Tiny Pascal system, or the P-code interpreter alone.

3) Negotiate a license agreement with Programma International to
sell the P-code interpreter together with your program. You take care
of your own marketing and distribution.

(.

4) Sell your software product through Programma International.
Programma will patch your program up so that it will auto-execute,
you have to do is sit back and collect the royalties.

All

-26-

Glaxity Tiny Pascal P-code Instruction Set

Least Significant Nybble
OOxx Olxx lOxx llxx OOxx Olxx lOxx llxx
LOL-5 LOLh

lol.
LOL 3
LOLw
LOL^

L0L7
LOL*
LOL,
LOL l0

ADD SUB SHLn.
SHRrv

AND
oo LOL MUL oo

o L0L.s
LOL^

LOL, DIV OR oo
LOL^ LOL MOD BITb

stl.5 STL .
STL0

STL j
stly
STL ^
STLC

stl7
STL*
STL9
STL/o

INC NEG LTEQU
STL DEG NOT LTENEQ M

■k:

o
STL .3
STL^

o STL GT1o
STLa GTE

V
INL INLW INLj INL,

INL g
INL,

-s
INI*.,
INL, 3
INL ,

INL0 INL, (<— floating point
\f-esiAiryt 3- O

0 oo
■% INL INL so oo

INL 2. JCNLp INL,. * OZJ
X IN OUT CPY RTS

3 IC indirect -
Vt/tAur-t, 2.0

IN 10
IN ib

OUT i0
OUT,*,
OUT ri/

(o oo

CAL0
o

CAL 4
GA L$
CAL<
CAL,

CAL 3AL.1
2AL.J
IAL /y
•*AL is

LOD LOD_ LODX2 4-
GAL oj 1 oo CALZ GAL/o
CAL 11

o
CAL 3

1 JMP JPF JPT JSR STO+ STO STQX
•rH
o ■<0 O

rH O
rO *»H

H

0>>
LIB LDA LIT DECAINCA-p crru.

32 On o•ri O LIT
■2-
G ro

JE Q JNE JGE * JLT STA INT • • tcn1 EOFl 0T3■P t-4
o o
S H

• • •

tn □LOL, STL, INL use local address mode# The least
significant nybble specifies the offset from the
local contour plus 5 • This gives immediate access
to the first five parameters and first eight local
variables. INL Is the local form of INT.
CAL the least significant nybble specifies the
static nesting depth of the call.
LDA, STA, JSR the absolute form of LOD, STO and CAL.
JEQ combines the EQU comparison and the JPT (jump
if condition true). Similarly, JNE, JGE and JLT
used to optimize CASE and FOR loops.

n □
33C

are

□z
\

